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taking account of the finite slze of the atom. Instead of having atomie matrix ele-
ments simply occurring as constant faclors in the transition probabilities we would
Bave Lo integrate products of the'atoniic waVe functions 348 the Corvélation fanctions,
The transition probabilities, in other words, would be inlegrals which involye the
correlation functions for finite spatial as well ag temporal intervals, Fartunately
these unilluminating complications are not toanecessary quantitatively at optical
and lower [requencies,

. Lectura ¥V THE n-ATOM PHOTON DETECTOR

The photon counter we have thus far discussed has as its sensitive element
only a single atom. Since that is hardly a very realistic plcture of an actual de-
tector, we must generalize our arguments to deal with detectors containing arbli-
trarily many aloms which may undergo photoabsorption processes. Wa shall carry
out this generallzation in two stages. In the pregent lecture we consider detectors
which consiat of a retatively modest number of atoma and show how these can be used to
investigale the higher order carrelation properties of the fHelds, Wa shall postpone un-
til ti e lastlecture afull liscussionof the statiatieal properties of a< tual photon counting
expe riments, since it will be useful toUiscuss the coherence properties of fields first,

The one-atom detector, as we Mave seen, furnishes ua with measurements of
the first-order correlation function of the Held, G'¥, There exiat, however, more
general carrelation properties of flelds; some of these are related, for example,
to experiments in which v-e measure colncidences of photon absorption processes
taking place at dilferent points in space and time. Such an experiment has heen
performed for example by Hanbury Brown and Twiss , and we shall discuss It in
some detall in the later lectures, :

Let us suppose that n similar atoms are placed at different posgitions ry,ry ...
Ty In the field. These atoms, we assume, form the sensitive element of a species
of compound detector. A shulter in front of all of the atoms will be opened during
the time interval from t,tot. We ask for the probability that each of the atoms
has abaorbed a photon from the field during that time interval, Though this prob-
lem is still rather artificial in nature, its solution will be an essential part of the
general discussion of photen counting we shall pndertake later.

The process in question involves the absorpiion of n photons, and therefore,
io caleulate ita probability, we must, strictly speaking, apply n-th order periur-
bation theory, MNeedless to say, a number of simplifications are available to us in
doing this, . ’

In order to solve the Schrodinger equation in the interaction representation

o 16> = B> (5.1)

we have already introduced the unitary time development operator U(t, t,) which
transforms the stales according to the scheme

11> = UL, t) jt, >
Alormal solution for Uft,t,) may be written (n the form
. =
W3 .
Uty = {e  [rimo ) (5.2a)
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vhere the bracket-symbol { }, stands for a thme ordering operation-id be carrled
out on all the operators inside the bracket. Il requires that the proddels b sper-
ators be renrranged so that ineir timeé arguments liorease from Fight 1o left, The
representations- (5. 2a and'b) for the solution are perhaps most easily-dérived by
writing the Schrédinger equation {6.1) as an Infegral equation and salyng’the in-
tegral equation by means of a powar serles, P

The interaction Hamiltonian ¢(t) for the n atoms interacting with the Tleld ia
glven by ' S

‘
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where @, ;(t) repregents the coupling of the -th atom to the field. The indivigual
coupling terms take the form .

@y e ~eZq () - B(r 1), o 1:,‘,'.. Lo {8.4)
which we have already discussed. Wa shall assume, for simplcity, that the atoms
are dynamieally fndependent of one another, le., that their zeroth order Humll-
toniang are deparable and commute. R

- The n-fold absorption process is described, to lowest order, by the n~tharder
term U'™(t, ) of U{t,1,), 1.e., the n-th order term of the sertes in B, {5 20),
By ingerting the Hamiltonian given by Eq. (5. %) into Eg. {5.2b), we sbtaly for
U (1, t,) an expresslon contalning n® terms, which represent all of thé ways in
which n atoma can participate in an n-th order process. Many of thesg terms,
however, have nothing to do with the process we are considering, since we re-
fuire each atom to participate by absorbing a photon once and only onc'g. “ferms
involving repetitions of the Hamiltonfan tor a given atom describe pguée,séeb other
thanthose we are interested in, The only terms which do contribute arg those In
which each of the #*, s appears only once. ‘There are nl guch terma, and all of
them countribute equally since the bracket { }, iz a symmelric functipn of the op-
erators it containg. Therefore, the part of Yi» {1, ts) we must cansider reducesio
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Since none of the n atoms can emit a photon { each of them ia in the ground
state initially}, only the positive [requency part of the slectric field a'perater in
each 7, , will contribute to the transition amplitude. When the electric flsld op-
erator in Eq. {5, 4) is replaced by E{ "(r,,t) we shall write the resultipg inter-
actlon Hamiltontan as #, " The operators &, | commute with each ofher since
the atams are dynamically independent and the flelds E*(r,, t) commige. We can
therefore drop the ordering bracket {- }, In the expression (5.5), and write the
desired part of U'"(y, t.} as an n-fold product of single Integrals ' . oo
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“The result 13 a slmple one.' The operator which induces the transitions which
intarest us is simply a product of the operators which induce the individua! ab-
sorption processes, This does nof mean, however, that the matrix‘of the trang-
ition operator factorizes, el

- In evaluating the matrix element of the operator (5.6) between two states of
the enlire system we mus{ note that the individual atoms which are all in the same

ground state: initially may make transitions to final states ay which are different
for different atoms.” If we Indicate.these initlal and final states for the atoms with
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i{el > and Hab >, and use the symbols [1, {g} > and i1, {2,} > tor the tnitial apd

linal states of the Cilire gystem, then the matrix e 3 5 {a}
lakes the form i tement of {5.6) or of U {4,6,}

<hfa iy (gl > =
i t 1
(Mﬁg)“jl-‘”' j;: € ‘zi“pl‘i

where we have lnirud-uced_notatimz for the atomie matrix elements and frequ
anaiogous (o that of (ke precedlng lecture, and have eliminated tensor mdeg;;a;;ea
assuming the field 1o have 5 unique polarization ag In Eq. {4.21),

We must next carry out upon the amplitude (5.7) the now familiar procedures
of squaring, sumilng aver final stales of the Held and averaging over initial stateg
of the {ield. The expression we derive in that way 8 a transition probability for
each of the atoms to reach a specified final state lay>.  Since each of these final
Blates s In general par of 5 continuum we must sum the probability we have de-
rived over all the relevant Hnal atomic gtates., We shall again assume. that our
ctunting device does record all of thege flnal stateg with equal likelthood, but

(5.7)

]
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pracess {a recarded, For simplicity we shall take thig recordin

g probability to be
the s;zlue function for each of the n atoms of the detectar, We may then car?y out
the final siate Sumniations for the atoms by Introducing the same aensittvﬂy fune~
tions we discussed Eqs. (4.10) and (4,12} of the Preceding lecture, “Whenthese

:i;?tpfﬁ sums and uverages are all carried out we find for the n-fold counting proba-
¥ .

¢ { =
{6 P R
[ N I {a _{’ }{,ls(v; - trj) Gm(rat'a I rnp“f.np; .,.. b)) x

n
;-ﬂ: 'dl‘f dz‘; " (5.8}

NP {nj . . )
In this expression G'" |4 the n-th order correlation function for the {ield defined by

o} rae X 2 {-) 3 + +
G0 e xa) o Tr{pEDx,) . EC ) gt Wpp) +or B(x g0
withx; = {r, t}.

For broad band delecigry eq. {5.8) reduces to the aimpler form
%u)(l} " "f‘ J“ {a} .
p 5 g oo G e, .. ri, Tt . fll'g)ﬁdt' . (5.9)
s [ PRI

An ideal n-atom counter thus measuras a time integr -
Lo e et gral of the n-th order correla-
We haye thus far connidered the o atems which undergo photoabsorption to be

Farl of a single detectoy, But a detecior constructed in-this way is not very dif-

N‘-‘lﬂh really, [rom a get of o detectors of the one-atom variety we discussed in

th; ast tecture, I we regard the n atoma ag the aensitive elements of a set of

gu F:isdlipe?den't gele::;urs, then the n-fold photoabaorption process we have been dis-

B furnishes the bagig of g rimitive t i -

of Phots p ve technique for n-fold coincidence counting
tTM techaigue muy pe refined a little if we imagine that there {5 g separate

fhulter In front of cuch; one-atom detector, . Then we may assime that al) the shut-

ter‘sf ?lpen at lhe sanme tiqe ts but that the time at which eachof them 15 clased may be

;al ie arbltrarl%y. Lit gy suppode that the time at which the j-th shutter i closed

s; . :I*hnn the j-th ata:n only sees the lleld:from time ¢, 10 t;. The effect of

ciosing the shultir iy be simulated by assuming that the atom is decoupled from

the field a{_tﬁrhe t,. For this phrpose_ wa rhay iIntroduce the step iunct:ipn -

rate, i.e., a counting rate per {unit time}*, may therefore be defined 35 '
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o b Ofort <o I
By = § _ N (5.10)
2 lfort>0 o
and write an effective interaction Hamiltonian {i. ., one which takes accbunt of
the closing of all the shutters) as e
“ + & ‘l
) = Zolt -0, (9. SR A

The caleulation of the probability that a photoabsorption takes plage In each

-detector s essentlally the same with the effective Hamiltonian (5, 11} ag the cal-

cuiation we have deseribed earlier. ' The only real difference,besides’tHe one of
Interpretation, ie that the answer for the total detectfon probabitity is.now an n-fold
time Integral in which the upper limits of integration are the times ty, "For the
broad band case the answer s, for example AT

Pt t L
p™M(tieet) = s“_(ldt’. {?:v, G‘"’(nt‘;---rntg,rnt;-v--r.i‘l}‘_.‘ o(6.12)
@ # .

4 ’ :
The times t; -+ t, may be varied Independently. An n-fold delayed coincidence
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This result verifies the statement we made earller that coincidence experiments
performed with'ideat detectors furnish meagurements of the higher prder correl-
-ation functions, - : : LA

It may be worth emphasizing that the kinds of measurement processies we have
been describing differ both in method and in spirit from those that are gugtomarily
discussed in the formal quantum mechanical theory of measurement; - The formal
theory of measurement has been useful in eptablishing the physical interpretation

+-of quantum mechanieg) expressions, ‘But because there are few areas in which

exact gtatements meeting the required agsumptions of the theory can be made, the
applications of the formal theory have been quite restricled to date, o

The kinds of field measurements we have discussed are, by contrast, explic-
itly approximate In character. We have only caleulated the transitiop probabilities
10 the lowest order in which the transitions occur. While this approximation would
not'be too diltieult io remedy for individual atomic transitlons, the higher order
effects in multi-atom detectors would be found to have quite a complicdted mathe-
matical structure. It is implieit in the approxkmation we have used that the eleg-
tromagnetic influences (as well ag other influences] of one atom on ancther are
lgnored. . That can be seen, for example, from the fact that the £ operators which
occur in the correlation funetion G all commuta. The transition rate { 5.13), for
exampie,” does not depend-on the ordering of the times t,-+ -t even though the points
T;t) may have time-like relationships to one another and electromagnetic gisturh-
ances can indeed pass from one point to dnother. LT

While'the atoms may influence ona another electromagnetically In'ways not
described by our lowest-order Yesults, ‘those influences are typically extremely
small-and are sometimes of a kind that can be eliminated experimentally, “To take
a specific example, let us suppose, that Instead of a'simple photeabsorption procass
in atom 1, we have atype of Raman effect which produces another pholon as well
as a photoelectron { Fig. 8). The emmited’ photon may then be absarbed by atom
2, producing a gecond photoelectron, | Not only does this type of process have an
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extremely small cross section, hut it may be eliminated entirely' by choosing detec-
tor atoms with lonization potentials greater than{1/2}Rw,

We have mentloned the electromagnetic influences of the atoms upon one another
just to underscore the fact that we have not been describing an exact theory of meas-
urement. It may none the less be an exiremely useful and accurate theory,

Lecture VI PROPERTIES OF THE CORRELATION FUNCTICHS

The n-th order correlation function was defined as the expectation value

G v xan) = T pE  (xy ) EV B () e EC (x| (6.1)
The averaging process we carry out to evaluate this expreasion 13 the guantum
aechanical analopue of the classicyl procedure - introduced in the first lecture.
Th ire we apoke of ay Jrages over a set of random Fourier coe'ficlents, The re-
ser iblance between e two approacnes 1s not yet a very persuasive one bat 1t will
betume more 50 as we priceed, ,

As a first property of the cor elation functions wa note that when we have an
upper bound or the rumber of photons present in the field then tae functions G
vanish fdentically for ak orders higher than a {ixed order M, To state the prop-

erty more explicitly, if [n> s an n-quantum state and the density operator is
wrilien in the form

[ =m2nc,‘ml n><m , & (6.2}

+
then il we have ¢ sm® 0 Whenever 0:> M ar m > M, it tollows from the nature of
the annikilation operalors B | that

EV ) oo B0 = 0 (6.3)
forp > M
Furthermore, the conjugate relation
PEM(x) e EYx) =0 . (6.4)
also holds for p > M, Thus it fo'lmws that

gz 0 ‘ .(5 §)
far p > M,

A

*&‘his_ relation, which foliows from the pmsiti\ée definite character of {
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This property of the correlation functions must be regarded as 3 rather strange
one when viewed from the standpoint of classical theory, There the ‘corpplation
functions are essentially sums of moments of the probability distribytion for the
Fourier coefficients, and it would be quite difficult to imagine & czjsa*mr?wksich the
moments higher than.a certain order vanish identically. We have, in fact, construc-
ted atates which have no classical analogue by imposing ar upper bapngd gn the aum-
ber of photons present, However, that should not be surprising sineg in ‘the Limit
i~ 0 these are states whose toiat energy goes to zero, I

A further property of the correlation functions can be derived from the general
statement <

Te(At) = (Trap | IS (6.6)
which hoids for all linear operators A, Applying this identity to Lhe .cm:reiaimn
funiction {d. 1), we find Foun

(600 o )] = T (e - B ) B (a2 B )}
AR, (6.7;
= Tr {(pB ) o0 B, 0 BN o0 M) - Gxeate 1),

Here we have made use of the Hermitian character ofp and of the in'vg{iiince of the
trace of a product of operators under a cyclle permutation, L

As a consequence of the commutation properties of the f£¢9 and E*'we can free-
ly permute the arguments {x, ... %} and £X oy o+ X2n) without aliedipg the value
of UKy v+ Xpy Xpuper« Xan). We cannot, however, isterchange any of the first
i arguments with any of the remaining n, unless suitable terms are added, siace the
corresponding operators do not commuta, e .

A number of interesting inequalities can be derived from the'ganeral statement

Tr{p AtA) = 0, {6.8)

[CRE

h;e operalor in
‘the brackets, holds for- any linear operator A, To prave the inequallty we note
that p.is Hermitian and therefore can be diagonalized. Thus, in some representa-
tion it has the form : . . ot

gt
,

<k1pim> = §.p : VL 189)

It follows immediately from the definition of the density operator that. .

p = <klplk> = {<kli> <ilk>},, = {I <llk>1%},, = 0.° (6.10)
{Furthermore, since Trp= b= 1, not all the p; vanish,} Now FY gi;ﬁple appli-~
eation of the completeness relation gives SR

Tr {pala} = zp<xiafa> L

. C S (6.11)

=ZpZ <klAbm><miAlk> = 2pF 1<mialk>(? 20, | 7
k ) : . k Y

Of course this vﬁiu‘e— for the trace is lhdependent of the particular ré_p_x;esenmtiun
used.; “Hence the proofof the inequality {6, 8) 13 completed. Tr
A number of results may be derived from the general inequality (6. 8) by means
of varioussubstitutions., - For example Lhe choice A = 'E x) gives at-once
B ] T e o (6.12)
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.'.'Sirﬁ-fiari_'y_lése gubstilution A4 = BfY () =+ BEUx,) give us

G xy o L mpees ) =0, {6.13)
These two relations are also evident from the physical meaning of the “diagonalt
forma of the GI%, The zorms_ are interpretable ag photon intensities and coipci-
dence rates respectively, and are thus intringically positive.

These results and ait of our later ones can be generalized immediately to deal
with vector flelds E;f” {(x) rather than the scalar tield B %), we need only ag-
soclate a vector index &y with each coordinate Xy, We can thus conslder x, as a
sharthand for the set of variables {ri.tyu} instead ar simply {r,t,},

Ancther possible cholce for the operator A is

B ¥
A= Ty o O (8.14)
where the i; are a set of arbitrary complex numbers, For this ease (6.8) gives
ug
Z 26T, x) = oo (8.15)

Thys the set of correlation functions Gm{x,, x,) forms a matrix of coefficients for
a pogitive definite quadratic form. Such a matrix has, of course, a posgitive de-
terminant,

det [6"Mx,x}) = . {8.16)
For n = 1 this is simply the relation (8, 2). Forn=2we fing

6" x) 6 xe, %) = 6 %) 12, (6.17)
which is 2 simple generalization of the Schwarz fnequality.

By proceeding along the same | € we can derive an infinjte sequence of in-
equalities. We shall confine surselves however, to mentioning the quadratic ones
for the higher order correlation functions, U we write

treoXy) Gw(xm;"' HigyAzp - v X, )

R I L R T A T

SPACE AND TIME DEPENDENCE OF THE COHRELATION FUNCTIONS

We note that the operators Ef(r,p) eccurring in the correlation functions,
obey the Maxwell equations and furthermore satisfy whatever boundary conditions
we ordinarily require of the electric feld vector {e.g., periodic boundary condi-
tions or {he conditions for conducting walls). As a result the functions G’"'(x; eu
Xan} obey 2n wave equations and 2n sets of boundary conditions, ene for each of the
space-time variables.

Let us now consider the structure of the tunctions Gi¥ i stationary fields, The
best way to define slationarity in quantum mechanies Is to require that the density

%

e g i =

&
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pleture, however, the density operator for isolated systems is :ﬂ.wéyg_ 'um_euirzde-
pendent.} If we use this definition and the tamiliar interpretation of the Hamilton-
ian &8 an Infinitesimal time-displacement aperator we may wriie K
o, B e (0 =i

Tr{oE (x:)+++ Y03} = op eFpE (%) -+ & (xan) & ¥, |

- Ky Py iy K Ly ey 4 e ot
= Tr{e® pe® o ¥ gy ) ¥ ., e ¥ EV ) 6 ¥ } N
(=) o) R
=Tr{pE"rit, + 1) o B b, + 7}, S

.
.

where 7 {3 an arbitrary time parameter. We have thus shown that ic‘ﬁ:_‘ fsta:ilonary
Helds the correlation functiong abey the identity .

.
¥ i

. Gm(hh tes Patay) = Gw(l‘xh FT s Paglig 1), . {6.20)

i.e. they are not changed by a common ti me digplacement of all the ar’guzgienis. As
2 result, the G may he thought of ag depending only on {2n-1) Hme differences,
The same gort of argument can also be constructed for dealing with spatial dig-
placements. When the density operator commutey with the componsiits of the mo-~
mentum of the tield, the correlation functions are invarlant under df_spl;zcemem of
the spatial coordinates in the corresponding directions, T

One further mathematica) property- of the correlation funclions fs'a cansequence
of the way in which the functions are constructed from the positive Whd negative
Irequency. parts of the fields.. The function Gt .. bo, Loyse tdy) has o time
dependence which, according to sur-conventlon, contains cnly positive Irequencies
for the varisbles t mi1 <+ tan and only negative frequenciesfor t, ... by, "Thus, for
example, if we Ignore the spatial dependences we may write B
¢y p) = R S e PRI X

withw, andw,, > 0,

. Now if we consider G "(t, t'} as a function of two complex time variables, t and
t', H is clearly an analytie function of ' in the half plane Imt' = ¢, ‘and an analytic
function of ¢ in the half-plane Imt = 0. L

We can therefore use the Cauchy theorem of complex functios theory to con-
struct identities such ag ot

- o . o
o 1 G'Y e, 1y

O R S e
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‘where (0 is the contour In the complex 4 -plane which is shown in Fig. 1.
Now fram the boundedness of the coefficienta ¢, In Eq. (6, 21) we may see
that the semi-clreular part of the contour in the lower half plane gives no contri-
“butiofy.1n the linitas the radius R goes to Infinity. Furthermore we note that the
“epntribution of the Infinltesimal semi-circular contour in the upper hali-plane ig
just -ai times the residue at the pole. In this way we find

Gy e
..»....LJ._{._) dtt R (5.23)

-

G“a“.tl) = %P f

where the integration fg performed along the rea) axis and the ‘aymbol P denotes the
Cauchy principal value. When we take the real and Imaginary paris of Eq, (6.23),.
we obtain the pair of relations

l EOR l} 3]
G, vy = =P [wWJm de , (6.24)
] (] 1 .
ReG'(1,¢) = -1 pf Emt,? L) g, (6.25)
- G

These relations enable us In principle to ealculate the imaginary part of the cor-
relation functions once we know the real part and vice versa.

Hilbert transform relationships of this type have recelved a considerable
amount of altention in physics and electrical engineering in connection with the
requirement that linearly respondlag systems behave causally. The relations such
as (6.24) and (6. 25) which are cheyed by the correlation functions, however, have
nothing to do with causality,. They ars simply consequences of the way ln which the
functions have been defined. .

Lecture VU DIFFRACTION AND INTERFERENCE

From a mathematical standpoint, the quantumn mechanipal freatmeni of dif-
fraction problems need not differ too greatly from the classical treatment. . The
tield operators are required In genéral to obey tha same linear differential equa-
t.ons and boundary conditions as tho classical flelds, The problem of constructing
Buch operators may b . reduced to the problem of finding a sultible get of mode
fun :tions in which to sxpand them (.. e., & sel of moda functica which asatisfies
the ‘wave equation togsther with suitabla boundary conditions on any surfacei pre-
sent}, ‘To find these modes we na urally resort to the familiar methods of the
clasgsical theory of boundary value problema. The solution for the mode functions
ls not a quantum dynarm'cal problem at all. On the other hand,the fact that it s a
well-explored Y'clagsical't problam does not mean, a8 we all know, that it is nec-
essarily 2 simple one, o

Let us return, for example, to the discusaton of Young's experiment, fllustra-
ted in Fig. 2. When we said that the field at points on the screen Ly 1s slmply a
lnear combination of the fields at the two pinholes P; and P, evaluated at appro-
priate times, we were not solving the diffraciion problem exactly, bul making a
number of physical approximations, -One approximation, for example, was an lm-
pliclt neglect of the-fact that transmission of Mght through the pinholes has d'alight-
ly digpersive character. - {This effect can-be quite anmall if the bandwidth of the in-
¢ident ratiation Isinot too broad; }- ‘Approximations such as these are egaentially
clagsical in character, . Théy are present stmply becausé we have not taken the
trouble ko sulve the classical diffraction problem more precisely,

R

‘then the intensity becomes
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With this understanding we cin now diacuas Young's experiment in ‘fully quantum
mechanical terms, The positive frequency part of the fleid B/ (r, 1) when evaluated
on the-gereen Za will be given, just as in the classical theory, by a linear combin-
atlon of the fields E'*) evaluated at the pinholes and having the form of Eq. {2.1).
The only difference is that the fields E are now operators, 1f we assume that the
twa pinholes are not only quite tiny compared with their. separation bu} equal in size
then we shall have A; = A, in Eq. (2,1) and we may let the constant'A, gtand for
both coefficlents. Now if our observations of the Interference pallerd-on the screen
Iy are mads with an ideal photon detector, -the counting rate of the detector will be
proportionil o G‘_‘-(r Lr t). Inother words, the intensity observed will be pro-
portional to e

= Tr{pEH(r’t) Em{rﬂ} & ,. '_ s
Te{pt (Y00 ) + BN xa) ) (™) + E‘;’{x’?‘}.l} . (10

where we have again let x, stand for the point (r ,t;).' This intezzs.ity 'zna‘y_ he ex-
pressed In terms of first order correlation functlons by expanding the, produet in
Eg. (7.1). We then find T

L= {6 (x4 60 x4 2Re 60k} L 5 0 (1)

The lirst two terma on the right side of this equation are the intensities which
would be contributed by either pinhole in the absence of the other, These are, ac-
cording to the asgumptions we have made, rather glowly varying functions of x,
and xa. The third term on the right side of Eq, {7.2) la the inte riarénce lerm, as
we have already noted in the clasaical discusalon. The correlation function for %
# x3 in genaral takes on complex values. If we write it as ! -

'G“:'(X‘xil = lG(I}(xlxz)let'(:l,xa) , ‘ )

s A {6 xxs) + G xaxs) + 206 (2 x4) [coa Pxixad} -, ' (7.3)

and we gee In the ogcillation of the coslne term the origin of the familiar interier-
ence fringesa, Tl

SOME GENERAL REMARKS ON INTERFERENCE

The discusaion we have given of Young's experiment is so clogely related to
the usual classical analysis that it may not be too clear in what way the interfer-
ence phenomenon is a quantum mechanlcal one. A few general remarks about the
quantum mechanical interpretation of interferences may therefore-bé in order, In-
terference phenomena charactaristically oteur in quantum mechanics whenever the
probability amplitude for reaching & glven final state from a given initial one is the
sum- of tWo or more partial amplitudes which have well defined phase relations.
The individual partfal amplitudes are usually contributed by alternative ways in
which the system can evolve from its Initial state to the final one; |, °

The Young experlment furnishes a simple {llistration of these generalities,
We may consider:as the initial étate of the syatem one in which a wave packet re-
presenting a single.incident photon ed t the left of the first screen o (Fig, 2.)
which'has the: dingle pintiole. .-We assume that initially all afoms’ of bur photodetec-
tor are in the nd stite, - The final state of the system will be takan to be ane in
which the photon has been absorbed and one of the atoma of the counter has been
correspondingly éxclfed. The-amplitude for festuing this final gtate Ls the sum of
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‘two a’mplitudes, #2ch associated with the passige of the Fhoton through one of the
two pinholes i the SCreen L. ) - ) .

Itis tntaresting io note that the existenca nf the tnterferense elfect is linked
gquile essentially with our inabillty to tely which of the possible paths the pheton
actually fakes, Meils Bohr hag Bhown, in'a famous argument, that any attempt to
determine which of Me'twe paths the photon. hag followed wiil #ipe out the inter.
ference fringes, Oye way of making such an attempt, for sximple, g by trying to
Measure the recodl of the screen I; when jt deflecis the photon, The photon may
transfer either of two different reeoll momenta to the screen ( If 1t excites the

mamentum of the screc n Wwe must be prepared to accept an uncertainty in itg posi-
tion which will megq that no fringes appear when {he experiment Ig performed re-
peatedly, ’

This lesson is one which can be generalized to apply to all of the guanium
mechanical situatlons we have degcribed eariler. The different paths by which g
8ystem may evalve will contribute amplitudes with well-defined Phase refationg only
ag long as we have no way of telling which path the gystem takes When we mnake
obiservalions 1o determine the path we eharactaria:lcaliy alter the system by making
the phases of the partial amplitudey random relative to one another, i, e, ) WE wipe

that the quantjtipg which Interfere in quantum mechanics are amplitudes associated
With particular historles, since the terminology which has been used has often {n-
vited confusjon on this score, : '

An example of g statement which ig often quoted and easily misinterpreted ig
made by Dirac in the first chapter of hig classic text, The Prinei fes of Quantum
Mechanics (Oxford, Clarendon Preas, 3rd editlon, 1947, p. @, ) There Dirac
polnts out that the Interference of the twe component beama of the Michelson Inter-
ferometer canpot be inferpreted ag taking place because the Photons of one beam
sometlmes annihilate photong from the ather and sometimes tombine to prodyce
four photons, "This would contradict the conaervation of energy. The new theory,
which connects the wave functions wiih probabilities far one photon, gets over the
dilficulty by making each pholon go partly into each of the two components, Each
photon then interierey only with liself, Interference between two different photong

Situation generically stmilar to thauol Young's experiment, one in which the interfer-

: ) To altempt tg apply Dirac's
Temarks as a genera} doctrine fop dealing with other types of Interference experi-
ments may lead to contradictions, as we shall presently gee,

mechanical and Communication theoretical contexis as well. We shall pot altempt
to congtruet ap tncyclopedia of thege usages here. We ghal try instead to give
the term a precige meaning when applied to electromagnetic fields, ‘The meaning
we shal} adopt ig in faet one which links several of these caonventional usages io-

The familiar toncept of optical coherence ig associated with the possibility of
producing interference fringes whep two fields are Superposed. Let us return to
the expression {7.3) for the Intensity oliserved i Youngts experiment, H ig clear
that 1o fringes wil) be observed If the correlatlon funetion Gt Bixy, n,) vanishes,

and we may describe 1yt condilion by Eayiny that the fjelds at %, and x, are
incoherent, '

"~

A

-
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" ence with a field which exhibits the strongest possible Interference fv_i:pge_as, How,
in the jast lecture, we have derived & ganeral inequality, (Eq. 6. 1" ' :gvhiqh stafeg

o+

- .‘Gfl;{x;x;)_! = {G“’(x;x;} G“i.fxzxz)}‘.} . CL e

LY

When we. keep the intengities G‘"{x. %} and G "( Xz2%;) fixed, the strangest con-

“trast of the !ringe"intensiti&s which 1s possibla corresponds {o using the equality

sign in thig relation. Thus _we have established the necessary condition l?r coher-

ence “"' x
[G”’(x,, x| = {G“'(x;.xd G’“’ix;,x;}}* . _;. :‘ (7. 4)

It we introduce the normalized carge‘lgt(i:?'hi!:c;ﬁoa '
g (x1,x) = {G“)(x“ xi') G“’{x,,x,}}% ' . {1.5)

the condition (7. 4) becomes .*..: o
| 1€, X} =1 : {7.6)

or, in other words,
telx ,x
gV (x:, x,) = o R .

Substitution In (7.3} now gives for the intensity In Young's experimu'nt’- r

Tet
e

L

A7 1= 6¥(xy, 1) + 600, ) 426" x,, %) ', ) dos o (x,, )

E T 1 NN
= e, ot e, g, L e
This Intensity varies between the Umits . ‘ ‘ .
1 S
T = (6001, ) P - 6Py, )Py ISR LR
and ) , o
Tows = ({600, x4 {6V, =)}y . .y
The parameter théh ié usually called the visibility of 1he fringes is g}'ven by
A T _ e xy, ) Gm{xh_m}s o (7. 10)
ve G (1, x3) + GUB(%s ;) L
'!mu + I oin +

If the fields incident on the twao pinholes have equal intensity, ll a, ,.'_u G“’(xl, Xt}
= G x,, Xz), then the intensity varies petween zerc and 403! %1, %) and the
vigibility ig v = 1, )

The condition (7. 4) is only a condition on the fields at fwo space.time points
Xi and x5, When it 18 satisfed we Flght speak of the fields at thase two puinis ag
‘being coherent with one ancther, -That would carrespond to the usage adupted by
Barn and Wolf in their discussion of classical fields on the basis of thne-averagad
correiation functions, cle T o oo

* In_quantem méchanics one characteristically thinks of the entire _ﬂelq as a

dyzi'amical.’syst'em Citwill be rather more convenient, therefore, for miany analyt-
ieal and slalistical purpnses to think of coherence as an idealized ].uteperly of
whole fields, That projerty can be deseribed in terms of the condition (7.4), but
an equivalent and matﬁeu:aiicaiky more useful description can be given In termsg
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of the requirement Eha}t the first order correlation function factorize, Let ps sup-
pose that the correfation hunction G'V{x,, %;) separates into a product of two
fapctions A(x,} and B(x,}, Then from '

60y %) = Alx) B(xa) . 1)

we conclude via the symmetry rela iog, Eq. {6. 7), that the functiona ﬁand B chey
the identlty .

Alxa} Bl(x,) = Av(x,) B*{x,)
ar
(%) A’(xl)

——

B 0a) T Bl (7.12)

Since in the lajier relation a function gf ; 18 gquated to one of x; bofh fupetions

must be constant. Fupthermore fhe conglant, let yg call it i, must be real ags we

can see by equating xy and x2. We thus have u ‘
A(x) = 1 B¥{x), (1.13)

and from the fact that G'M{x, x) ig positive it becomes evident that 4 1z t
y ; L tive,
Hence, i we define the function | M pasitive

& (%) =V B(x), (1. 14)
we see that the [irst order correlation functiop falls Into the form
67 (s, %) = 6 4(x) £ fxa). (7.15)

This explicit construction of the f4ctorized form of the correlation function shows
lh?.t, when factorizalion does take placa, the functigp £{x) ig almost uniquely deler=
mined. The only ambiguity which remains la that pf a congt&nt-multlpllcative—
phase factor, - S

- - We shall find it most convenient to use the factorization pfﬁ;ﬁerty {1. ;5) ag
our deflnition of optical coherence or first-opder goherence of the field, It is
immedialely evident that this conditipn Impliea the conditiops {7. 4) and {1.6) an.
the abgolule values of the correlation functions. In fact, 1t 1s also trye that the
latter conditions, if they hold at all points in Lhe field, imply in turn the factoriza-
tton condition (7. 15). We shall demanstrate that ghortly and thereby show that the

two ways of discussing coherence are equivalent. But firat let us discugs some
examples of echeren| fields, . ’

The most elementary example of & tield for which G'® factorizes | -
sical fleld for which the Fourier coefficients C, are recigely dété'rmi:ezp?t.g:?s
any field for which the probability distribution p({g:j) reduces to a product of
delta-functlons. In {hal case the functlon'§ (x} 18 simply the eiassical field E(x)
Htaell. We perceive here a first hint of the close yssociation which exists between
pohorence and nolselessness, an agzociation which we shall preseatly explore
f:‘;l::}f:l‘s ;I‘he[abifnlc;ehoi r}apdomnesa or rolse in 'ﬂgﬁ specitication of the Foyrler

ficlents of a field has long been t-e er : ‘
for goeaking of & "coherpnt“-gﬂlgnal.q f ,t.;er_ion el .by .c;.:.zfnrfmnic.!uon engincers

i 0 see another Hlustration of cbhe_renca et nota that-oim of 4
ways of performing Young's experiment, though ﬁrhéps not the mo:tmpxgﬁﬂffone
ts to begin with a single photon wave-packet incident upon the first pinhole. Then '
If we repeat the experi nent many tin es, duplicating the wave packet precisely in
each-rgpgt-ﬁtim;, we should expect Lo vee the familar interference fringes in the
atatlstical distribution of puotons received on the finl screen, That pure stateq
for slngle photons are always capable of givingrise to fringes, in this statistical
sense, may he seen by examining the firat-order correlation function.. Let us .
Buppose that the lield {s in dome pure single-photon state which wa denote by

B et

s, oy

T =L e B w1 L

/ .
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e a7
| ¥ phot,> . Then the density operator for the field is
o= Ii--ph‘t}t.},_f: 1 phot, |

or
G

CE (1)
and the first order correlation function reduces to S0

13

6", ) = < 1phot 1BV (x) BV 1 phot.> | L (119)

HY)
Now since E'* Is aphoton annihilation operator, the state E'*(x;) |1 ghol."> can
only be a multiple of the vacuum state which we denote as [ 0>, It ig therelore
poasible to insert the projection operator upon the vacuum state, {0 > <0}, between
the B4 and g 0 operators in Eq, {7, }7) without altering the value of the gorrela-
tion function, When we do that we find e

GMx, 1) = < 1 phot 1ECN (1) 10> <01E (xa) |1 phot. >, (7.18)

which s exactly the factorlzed form required by Eq. (7.15). Hence Jny pure state
in which the field ls occupied by a single photon possesses first order.coharence,
{In this way the optical definition of coherence makes contact with seihie of the ways
in which the term ls used quantum mechanteally in connection with puré states.)

We have, of course, only proved that a pure one photon state is eghereal, 1f
for example, we repeat our hypothetical one-photon interference “experiment with-
out duplicating the same wave packet each time, L é., if we consider a mixture of
pure states, then we can not expect in general to ohserve intensity frifiges of maxi-
mum contrast. Certain particular mixtures of one pholen stales may, however,
preservae the factorization property (7. 15} of the correlation function and thereby
preserve the coherence property. Hence we must not think of pure states as the
only ones which bring about coherence, S

To give an example, let us suppose that only one mode of the field is excited,
say the k - th. Then, since the other modes all remaln in their ground states, It
is easily seen that we may ignore them altogether in caleulating the eorreluiion
function. Now if the density operator for the k ~ th mode assumes the general form

N

p=p Chpmin><ml, U {1 19)
m ot
where [n > is the n-th quantum state for the mode, we may write the first-order
correlation function as S

Gt mats) = _% Ty E}ch <mia,lain>u :{r.)uk(r@}_e' wultatd

=ct u} (n)eh w(ra)e ™ s SR L

where in the ilrgt of these expresstons we have anllcipated some of the notation of
Eq. (4. 21} and inthe second we have used the definltion

C’*-;-ﬁw.@ new L e
It ia clear from the possibility of writing L
£(r, B = Cuplr)e™y! (122

that the correlation function (7. 20) falls into the factorized from {7,18). Hence
the excilation of a single mode, whether it i3 ina pure stale oran arbitrary mixture,
leads to fields with first-order coherence, .

Although we have been able to give gome simple examples of flelds which
posgess first order coherence, it 1s worth peinting out that the factorization condi-
tion {7, 15} is quite a" restrictive one. It is, for example, not satisfied by pure

-
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stites of the tield in general as one may easily verify by calculating the correlation
function for a state in which two or mate photons are present and oceupy different
modes.  Initlal siates such as these may lead to Iringes in Young's experiment but
the fringes will not, as a rule, satisfy the condition of maximim contrast, While
the coherence tondition is restrictive one, we shall ghow presently that there
exists a much broader clags of #lates which satisfy it than those we have considered
- thug far, ' ] ) :
Let us note particularly that no statement has been made requiring that echar-
ent fields be monechromatic, The fields which satisfy the factorization condition
(7. 18}, or for which interference Iringes of maximum (insta:‘ztaneaus} contrast
gceur, can have arbitrary time dependences, The functions &{r, } which deter-
mine the correlation functions of these fields may consequently ha e arbitrary
Fourier spectra, What seemsg perhaps curicus about-these statements is that the
experimental effort io produce nearly coherent beams of light has chieily been 3
stru gle to produce higaly monochroinatie ones.  ‘The reason for thig connection
has L een that all of the effort hag. invelved the uge of stationary light sources,

Sueh sources lead to fields for which the Hirst order correlation fwiction depends
only on the difference of two times,

A"ty ) =6 i) ‘ (7.23)
Il such flelds are to be coherent the correlation function must factorize ta the form
Gt <ta) = 6 (L) 5 (1), (7.24)

but this 15 a functional equation which hag only exponential solutions. Since the
dependence of G'Y on the variable t2, can only contain positive frequencies we
must have & ()~ e "™ for gomew > @, In other words, a Coherent field which is
stalionary ean only be monochromatic, )

Alter giving sa precise a definition to fiest order coherence we must add that
it is a rather idealized condition, as is nearly any condition one places upon quarn-~
tum mechanical stales, we must not expect correlation functions for actual fields
to obey the factorization condition (7. 15) over uniimited ranges of the variabley
X and 3. In practice we deline coherence lengths and times to describe the ranges

af the spatial ang temparal varisbles over which the factorization holds o 2 good
approximation,

FRINGE CONTRAST AND FACTORIZATION

in the faregoing section we have dellned coherence, mainly for reascns of
mathematical tonvenience, interms of a factorization properiy of the correlation
function, That factorization property, we then showed, implies the conditiog {7.4)
on the absolute value of the correlation function, .e,, the condition that the fringes
show maximum contrast, Now it is posaidble to show that the latter condition, pro-
vided it helds for alispace-time points, also implies the factorization property, The

proof we present is taken from a fortheoming paper by U, Titulaer and the author,
When the relation

16V (x, xa) 1 = 6, x,) G'"(xa, xa) (17.25)

holds it places severe constraints upan the density operator for the {leld, These

consteain's may be foung by first noting that Eq. (7.25) implies the existence of
operators A such that

Tr(p AtA.) =0 (7. 26)

To exhitut such operators A we chooge an arbitrary 'spaee‘ktime point x, al which
the Inlensity of the fjeld is non-vanishing, G'"(x, x) £0, and write

4
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‘ i
(o L
L3 G %o, x {4 . L (7.2
A= B x) - m) EYH %q) . )
It then follows that _ N : -
| . ' LI LR
Te(p AT A) = 6M(x xo) - L8 L2HL . o LR

Gl {xs %) S

for all points x. Now the density operator p can be writlen as an a‘.e'e;_r‘a.gﬁ of prod-
uctg of the state vectors of the system having the form

R R
p=lop H><H {1.29)
where the probabilities p, ;re ail positive. The vanishing of the tr‘ap.g"gx.'.ren by

"Eq. "{7.26) means that- E
v‘ '1. e . 30
% op,<ial app>=0 LT
1 .. -
Since all the terms entering the sum are intrinsically positive, we lmay”?j‘ondude
that il
o .31
' <yt Al Ali> =0 T (7.31)
for all states |1 > for which p, = 0. But this retation implies in m_r_:: th:‘;t thesa
states i > are eigenstates of A with eipenvalue zero . .A y
All>=0 4oL (1.3

What we have shown is that the vanishing of the trace (7. 26} ;;‘;;Plie’s the pair
of operator relations

ap=pateo . hn (nam
Since these relations hold when the operator A takes on thie value .gf‘\tgn ‘-py Fq.
{7.27), the density operator must obey the pair of identities o
{1} 14 L. ". ) . 4)
O ps Elxa D 1, ST
B {x) p an(xg, xn) :’. 2
Al ) .
pEx = S AB B ety T ()
. G\ ('xw "n) coh

These identities may now be used to shift the arguments of cogrelagio?_-tgl;r;c;‘i:Qs
to a commion reference point x,. If we let x = x, in the first of Lhese-ldeln iti
x0~ %, in the second of them we may then use them (o construcl the relation
- 1

SR )
“' . ) G W%, xe
. [+ _ G  (xy, %0} gt %} EM{xo } ,
Trp ) BV} = iie e p £ o)} G
~ which can also be written as the functional Identity -'.' :
' - G Mixi, x0) GHPixe, xa) _
6'ixy, xo) ‘

GMx,, %) =

Now we have only 1o define the function £ (x) as o

& 1 X} .= ——*‘-——‘*—-—*G‘ n(xo x) L (7.36)
1t H
{G (Xn, Xu)}

. - N - ! N - ‘
in order to sce that the lirst order correlation function takes on the fagtorized [orn
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G %y, %) =8 Mx) 6lxg) (7.37)

There is no need to repeat this demao
I ! nstration in order to deal with the ¢
s;ructudr? :;é thie correlation functions for fislds which are not fully p:}lari;edensfig
we need lo do s 1o consider sach coordinate sty ;
N a5 10 cons X as speufymg 8 t.eszsor ndex as well

INTERPRETATION OF INTENSITY
INTERFEROMETER EXPERIMENTS

Liecturs VIO

In the preceding lecture we have diacy
: sged Young's experiment at some 1
a8 an example typic:.al of the inerferenca experiments which are baged upon Ui?gih
:::aes:re;ngnt 02 a {;rst arder correlation functlon. While all of the older interfer
Aperiments share this charact r, we have disguss )
K . ed in the second lecture
5om:zhm9re re.r:en} experinents which are of a fundamentally different type. These
are the mégns:ty interferometry experiments of Hanbury Brown, and ‘}‘wlsls which
measwum, in eflfect, the second order correlation function of the incident field
o & have glven a gimpie classical diseussion of the way in which the cnrréia:io
z{mges Appear in the intensity inferferometer when the field is produced by a pair !
ga:?ﬁi:‘;ﬁ:}?&‘ smaillangu;lgr separation. It ig Interesting, therefore, to invep:ti‘
2 momechanical origin of these same fringes. If
the fnlensity vterferomeler functio ing th ident Tields. 1 o
18 by [irat detecting the incident fieldy i
of two receivers, we see immediatel i e involven oot
- ¥ that pairs of photons must he i i
nterfevence eifect, L.e., nothing is recard N phatons are
i ,; e, ed at all unless different ph
inciden: on each of the two detectors IRl
: ’ : at more or less the same time. It |
crise:;i[y thig pon;l that oue is confrontad by a serious dilemma if he attachess T:)Em
great o generality to Dirac's statement that |
ooy S liy 10 bi at "interference between two differsnt
The general diseussion of interfere i
T : ; nce which we gave in the la
make Hoclear thi au soch Jdilenimg need exist, The g:ings which si{mlj;t;;erzhoum
Y W 71 is Ve BH i )
h}“it:dfl? 'l'nlt vlermg are not, strictly speaking, the photons, but alternative
n:,)m ivs ulllilv syutentag a whole. Let us Umagine that the initial state of the
gys u‘ni 1s she Hwiiel twa {generally overlapping) single-photon wave packels
CSS,.‘Z:;';Q‘ _th:}mld Al the atoms of the two detectors '{represented by photon
'y I wround state. We may take the final stat
one in which both photuss have heen abso o o tach f patem {0 be
: : rbed and one atom ln each of th
is correspondingly excitvd, H we labe! the Ccomtors
. photons 1 and 2, and the two ¢
aand b, we see that there are Lwo alternative ways iy Wh.iC;l the final slat:ur:;;rse

reached. Either photon 1 i
ey p s absorbed by counter a and 2 by b, or { is absorbed by

IW.G

2M'b \

{ . g
Figure 8

I:[ the Juye }s,(.“s had dl!o +
gethe[ dif‘el ent a“e!age pr Gpa ﬂtinﬂ vector:s Ehehe al-
&
ernal ve histor ley Wouid be dlsliﬂguishﬂble by means of carefu} mensurements

R et st R et d .
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made in the counters. But the circumstances in which the fringes arg cbservable
are precisely those in which the packets have nearly the same average -propugation
vectors {e.g., packets with the same frequencies, small angular separation of the
sources). In other words the {ringes appear once again just when the gltgrnative
histories of the system become indistinguishabie, Stnce the amplitudes for the two
histories interfere, it becomes meaningless to ask which counter a?gsdrbod which

photon.
HIGHER ORDER COHERENCE AND PHOTON COINCIDENCES

We recall from our classical discussions of the second lecture thgt-the inten-
sity interferometer measures the second order correlation function 6 the incident
field. Radiation flelds generated by natural sources tend to have a ¢hactic quality
which allows us to construct these correlation functions from a knowledge of the
first order functions. However, no such constructions are availableg dn-general
for dealing with radiation from man-made sources such as the laser ar radio trans-
mitters. The flelds, generated by these sources can have much highgr regularity
than is ever possible for natural sources. It will be useful, therefore, fo sharpen
the concept of coherence by defining higher order analoguss of optical coherence.

We begin once more by stating conditions on the absciute values of the corre-
latlon functions. For full coherence we shall require thal the normalized form
of the n-th arder correlation function, BN

.

{n}
G (%) " Xa) " :
m__ml___wi.ml_ R S (8. 1)

ghi{xy e Xy )=
:i.Y;{Gm(x“ LN .

have modulus unity {or all n and all combinations of arguments x. If the functions
have unit modulus only for n = M we shall speak of M-th order cohergnce.

The concept of M-th urder coherence has a simple interpretation in terms of
n-fold {delayed) coincidence experiments. We knowthat G {x, - %, XK, - %)
ig an average coincidence rate for n ideal photo-deteciors registering at the polnts
%x; *++ X,. Since this value of the function is real and pesitive the condition Lhat
gt™ have unit modulus for n s M implies that .

¢

I T AR

for n= M. Hence for fields with M -th order coherence, it is clear f}'gbrﬁ_the defi-
nitlon of g'™ that we have o

. " .
G{”(Xl AR YRS ¥ I xl} SJE-II G“‘(xj'xi) S (8.2}

forns M, - \
‘Expressed inexperimental terms; this means that the n-fold cotricidence ratels

just the product of the counting rates which would be measured by each counter
individually in the abaence of tha athers. Thus there i3 no tendency loward statis-
tical correlation of the photon counts. In & fleld with ¢cherence of order M 2 n the
n photon counters reglster in a statistically independent way. ot

~-Beveral investigations of light beams using coincidence counting of photons or
equlvalent experimental procedures have in fact been carried out during the last
few years, The [irst of these to detect a tendency toward statistical correlation of
the arrival times of photons was performed (in addition to the other experiments
we have mentioned) by Hanbury Brown, ‘and Twiss, ' In the experiment light
from a source 5 {Fig. 9} passes through @ pinhole P and then reacties a hall-silver-
ed mirror ms, which splits it into lwo beams. Detectors D: and Dy are placed
symmetrically with respect to the mirror, Thelr photocurrents arg multiplied to-
gether by the correlator C whose average oulput is the quantity measured, We may

.-
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consider the half-silvered mirrer m as device, which perrz:ﬁts ug, in effect, to
place two different pholodeteciors 4t essentially the same positionin the beam,

m
i N
] N

| —

Flgure 9

Shorily after the orlglnal experiment had been performed another version of

it with a slightly more direct interpretation waa performed by Rebka and Paund, ®

In the latier experiment Dy and D; v.re counters of Individual photons, and C is a

duvice for registering delayed colnsidences. The experiment i easures the average

¢oii 2idence rate as a .unetion of delay time while the counters wemain fixed in

thel ' symmetrical positiong relative to the mirror, Now, even if the photon beams

incident on the twe counters were statistically independent of ane another, there

would be a certain background counting rale of accidental coincidences. This rate
o would, however, be independent of iny time delay. Thus any ochserved dependence

¥ of the coincidence rate o the lime delay indicates a lack of statistical independence.

The result of the experiments i8 indicated in Fig., 10. If fhe responses of the
} counters were statistically independent the coincidence rate would be independent
} of tme delay. The obiservation of a small "'bump' in the experimental curve

Coincidence rate or
average photocurrent
correlatien

— N

Time detay

Figure 19

indicates that the photons have a distinet tendency to arrive in pairs.  Although the
effect was at Hrst difficult to observe It is, as we ghall 8how, not necessarily a
small one at all, The smal) Mmagnitude of the obgerved “hump” and its particular
shape in these experiments were determined almost entirely by the relatively slow
response times of the counters.

 Le us note that, if the counters are placed symmetrically with respect to the
mirror, the flelds whic) are incident upon them are essentially {dentical, apart
from a constant multiplicative faetar, It follows then that if r, and ry are mirror-
image polots in the twa delectors we Yave

-succession of conditjons ot

£
s
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fgP(rt, rat)1 = 1 TR

4.8, the flelds which fall on the two detectors have essentially perfact,ii'rst order
~eoherence. - The chservation of a positive correlation in the coincidence rate
-demonstrates, on the other hand,-that the fields are not coherent in the second

ordersense.” We shall show presently that this result is a characteristic one for
all experiments performed with natural Hght sources. These have & random char-
acter which destroys second order. coherence, - R

. oot

FURTHE_:R DISCUSSION QOF HIGHER ORDER COHERENCE '; L
- “Let us return now 1o the definition of higher order coherence. Ve Kave, by
analogy with first order coherence, defined M-th order toherence ip, terims of the

in Cre

16700 - 2, )1t = 1 6x, x) e (e
on the absolute values of the torrelation functions for n = M. Just as lhe first
order case we found it convenient to express the coherence condition Jnan alterag-
tive way, as a factorization property of the sorrelation funetion, we shall find it
éven more convenient here to do much the same thing, We shall therefore state
ag an alternative definition the requirement that there exist a singte"qomplux
function £ (x) such that : S

Yt

Dxe e xyy =Bl 6%y B
G (xi x?n) -.}?l (xj) j-[rLﬁ ﬁ(x;) . . (5*5)
for all n = M. If this factorization holds for all n'we shall speak of tull caherence,
U we note that the definition (8.%5) contains the statement ‘.
G, %) = 1 6(x))?, L. (eg

then we see inmediately that it requires that the correlation functions phey the

absolute value conditions (8.4). .

It is possible, on the other hand, to show that the absciute value conditions
also imply. the factorization proparties. To do that we note thut M-th erder coher-
ence always requires first order coherence,. We may therefore makeé ugé ol Lthe
identities which were shown in the last lectura-to be cansequences af first order
coherence, “In particular, since the operators E")(x,} for }= %, n all commute
with one another, as do the operators E“’(x,) fori=n+1, ... 2m, we can use
each of the two identities (7. 34) and (7. 35) n tuoes in order to shift all of the
arguments of the n-th erder correfation functhon to a particular refersnce point xy .
More specifically, we write '

Tl‘{ﬂ E[‘}{XL) E‘i}(xns Eh}(xnu Jeor E{'afxan).} !
4 G“"(X. xo) . f-) ) 9 “" {4
Bl G, xa) Tr{p B (xa) - E 7 (n) B '(’fo} B (xg)}

ff Gl x),
paet GH

which is the identily Fapen i? o
= Gr“](xu".' }(4,) i=1 G (x? X(}} sne] ! G (X.u‘ xl)

. . Fss
{x; Xeu ) iGU'(M; Xo) }“ ) '{G“’{Xa Xo) }‘n

G{n)

]

N
=
ot
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4 7.37), and make use of
fntroduce the function £ {(x) which ia deflred by Eq. { . ) & g
glc‘:’riormalized farm af the correlation function, we may write the latter identity

in the form
it in R .
T RT A CREEE VI A€ I - P (8.7

as we have shown earlier, the funetlona  (x) can only depend on the

chaiiogf} the arbitrary reference point xg thrau.gh a constant phaseaf:;{;mz;; {:tiir;cifs
that phase facior cancels out of the product which occurﬁl in Bq.. (8.7, U falio
that for Helds with Hrst order coherence the functions g/™ (xq -+ %o} arajo eu
pendent of %, In other words, the condition of first order coherence fn t
jg sufflcient to bripg all of the higher order corrvelation functions into a Caic or-
ized form, although not exactly the form, in general, which Is requiire "
{or blgher order coberence, The difference is that Eq. {_a. i) conta;s e
eonstant factors g™ { X¢ ... %) which should be unity _l-f higher order .
epherence is to hold, Now the higher order coherence conditions .(8. 4) do require
thege coefficlents to have unit absolute value forn = M. Then, since the
gl {xae o xg} must be real and positive, they must be egua} to cmec.Htm (5.5

Hence thae condltions (8. 4) do indead Imply the factorizatien con n (8, 8).,

TREATMENT OF ARBITRARY POLARIZATIONS

From a mathematical gtandpolint, very little need be added 1o m‘tr‘earl:]er ctt}ils—
cussions in order to treat {ields with arbitrary' polarization properiies rat hex;e. an
the {ully polarized flelds we have bee: discussing. All we need do, a!s we iela{ign
alveady noted, in order to deal with the general tensor characteﬂr of t~1e gors
functions, s to think of every coordinale in the formuiae we have derived a
specifying a lensor index as well as a position and time. . oral

Thug the relations (8,7) forn= 1 and (6,17}, for example, may be ge
lzed to read

{Gi‘f {x1, x:)}*a(}‘v;} (xz, 3} (8.8
and

160 (x, %) 1S Gl (x, %) G (%, %) L (8.9)

1L may be worth noting that all Information about the state of polarization of the
field ia contatned tn the correlation tensor Gfuil {(x,%}. Let us dene:e this tensor
by G\« We see Immediately that §, is a Hermitian matrix, § gy =G I

we gubstitute A = f) Ay E:,‘} {x} inthe general inequality Tr{p al A} = 0 we find
il

3

.10
L 206,20 . {8.10)
(AL

Thus ¢ v ia also positive definlte, Because of its Hermitian character ¢ p can

ba diagonalized, that is to say there exist three real and positive elgenvalues Ay and

three {generally complex) elgenvectors a‘*", such that
c - E(Fl,. " Ap E‘F')' ;

Note that both the X, and the 8™

depend in gener'ai on the space-time point x, that
oecurs in the definition of 4. - o S

The 39 are either. [ound {o be mutially orumgonal il the »'s have nodegeneracy,

e®. g aae® (8.11)

-
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ar they can be chosen orthogonal if the A's are degenerate, Hence we _}r_ua'y assume
+ S

LT M T B

Bince the tensor product
e® g . gfer | Apb g e (ma

expresses the eorrelation of the tield componenta in the directions of §/P.q;y alv
there are three " directions' {i.e., complex directions} in which the Held COMpPo-
nents are mutually uneorrelated. Any field may thus ba regarded as A superposj-
tion of three orthogonally polarized flelds whoge amplifudes gre (i'nst':.mtanuuusly)
uneorrelated, ' K

The eigenvalues ¥Pare the intensities corresponding to the Ehree:izui:&yizations.
The total intensity is given by e

R R S e
A set of narmalized Intensities can be defined as ToenT
1 e (p =123 o
I

These numbers can be interpreted as specifying the degree of polurization of the
field. In an isotropic radiation field we must have Tp= 173, (p= 1,23, Ithe
field is stationary i.e., [P H] = Othen € is time independent and the A, and i, and
28" become fixed at any spatial position r. R

If we are considering a beam with a single direction of propaygation R, then
clearty k- ¢ = ¢ -K= 0 (aince light is 2 transverse wave). Hence K is an pigen-
vector of § corresponding to the eigenvalue A = 0, Then there are tiwo reprudning
eigenvalues X,, p= 1,2, The net polarization of the beam is usually defined as
1= Tal = |ay = 2a]/(a,+ Ra), The two polarizations &¢® for p=1,2%clearly lie in
the plane perpendicular to [, .

" The higher arder correlation tensors are defined by
Guloong (Kaveedan) = Tr {pBy, B () BS, (ye
Ef,;" (x50 A8.18)

The coherence condition, Eq. (8. 5), may evidently be restated for flelds of arbi-
trary polarization by requiring that there exist a vector function Gp{x) Buch that

-] in o .
e Y * B N
Gm___“h(x. X25) 32 4 #;ix,)l-g’ bu (%) v (8. 18)
forn = M, .
AS 3 last remark on polarizations we note that first order coherenge implies
full polarization of the field, L.e., If we have -
ot - . o
{}}w. {xx) g“y &#'(x)é‘v(x) . S BT

then clearly the vector &£ {x) itself 1z an eigenvector, The correspandir;g intensg -
3
ity i_sHE__ . 1&p(x} E’,.whlch_ is the full intensity of the feld present,

2.
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R.J. GLAUBER
COHERENT STATES OF THE FIELD - INTRODUCTION

Let us try {0 consiruct states in which the flelds hﬁve full coharence, 'that ia
ta say, states in which all the correlation ma_s:u_ons Gi. Jdactorize aceording {o
Egs, (8. 5 or{4.16). If there existed simulianeous eigenstates 9£ the operators
Etand EC, such eigenstates would clearly bring about the desired iactorﬁizatinn.
However, since E”' and £ do not commute (and have a commutator which is a
o~ pumber) it is clear that no such cigenstates exist, We may reduce our demand
to 4 more plausible level by noting that In the coz_'reiation funcilons the {ield opera-
tors always oceur in normal order, Therefors, it i? sufficient to sec\ére coherence
if the state of the field is simply an eigenstate of E%*) 'in the restricted sense

( * )
> .
This is true because the adjﬁiﬁt Ieiﬂ{ioﬁ is

= ( + (8. ig)

and together the two relations lead to the desired factorization of the correlation
{unctions.

Since the aperator E" is neither Hermitian nor normal (i.e., it cipes not
commute with its Hermitian adjoint}, there is no a priori reason why ezggnstates
of this form should exist. Indeed it is easily shown that the similar relation

<IE (M = 6 0<i (8. 30)
<an have no normalizable solution at all. The simplest way fo show that Eq. (8, 18
has solutions is to construct them, )
i If any solution of Eg, (B, 18) is to exist then it is clear that the function § (x)
n.ust satisly the same wave equation and boundary conditions as the operator

E™ {x)}. The kattar s the Fourier expansion
f

1 BA{'? .

¢ ot

P e

E(’)(r? [)

1]
'

(8.21)

i

Here Lhe time independent operators a, are described completely by means of
thelr commutation relations

[anaw| = [a,1,2,1] = @ o.22
{2k, 2] = 640
For §{r,t} we rousi have a corrtjspondmg expansion
1721
H -k .
65,0 = 1205 augnetst | (8.23)
k

where the coctlicients o, are a sel of numbers which can take on arbitrary cum-
tex values, )

’ Now i we subsiitute the expansions {8,21) and (8.23} In the equation )vhzch

determings the sigenstules, we see that the goefllicients of each mede function
must separately be equul, Hence the eigenstate must satisfy the conditions

aﬂ)“—‘m‘i}

(&.24)
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for all modes k, S

.

The coefiicients @, correspond in 2 simple way to the classical Fourier coef-
flelents €, which we introduced in the lirst-lscture, More Specilically if we come

pare Equations (1.8) and (8.23) we see that the correspondence is :
: : ’ ¥

This relation shows that to describe tlassical fields we shall have to deal with par-
ameters a, of large modulus, Loe., f welsth =0 then oy increages ga i 42,

- To construst the desired eigenstate we can begin with the com’strucupp of 2
state | a,>, for the single mode k, such that -

.-
.

ala > =aje > . ' (8. 28)
The state for the entire system is then given by the direct product
I >= ‘E'“’Pn : {8.2M

We shall call these states the coherent states, From the fact that they remain (he
Same, up to & numerical facter, when we apply an annihilation aperafu; 2y, It fol-
lows immediately that they cannot be elgenstates of the photon number pperator,
The sense in which states of the type {8.27) are coherent includes, ‘of course,
optical coherence {they secura factarization of the first order coherende function),
But it also includes 2 gense used in communication theory which we have mentioned
earlier. There a coherent signal Is a pure signal, one that has 0o noise.. A class-

" lcal signal of this type is ideally one with a precisely deflned set of Fourier coel-

ficlents C,, But this ia exactly the kind of (leld we are tatking about in the more
general quantum mechanical context, Our precise specification of the*Fourier co-
efficlents a, means, as we shall see, that we are as close as possillg t& having
no noise in the signal. It can not mean, however, that there it 1o nojse at all,
Unpreadictably fuctuating fields are present even in the vacuum, - Our delectors
detect lndividual phatons, and phatons tend to arrive randomly. Even when we

- $pecify the field as accurately as we can, we can only make predictions aboul the

response of our counter in statistical terms; there will be sone inevitable noige,
and the coherent states of the field only tend to reduce that noise to a-nrinjmum,
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